
1. A Call-Tree

2. Create a Call-Tree, Caller-Tree, or File-Tree

3. Toolbar and Related Operations

4. Search by Function-name in the Tree

5. Call-Path

Viewing Trees in Crystal C/C++ 1

Viewing Trees in Crystal C/C++

The List of all

occurrences

Current node

←

A Call-Tree

Switch to Other

Files or Functions

Occurrence in Code

Viewing Trees in Crystal C/C++ 2

Its next

Occurrence

←

1. To create a Call-tree:

Place the cursor within a function; click the Call-tree icon .

2. To create a Caller-tree:

Place the cursor on a function-name and click the Caller-tree icon .

3. To create a File-tree:

Click View → Current File’s Includes or click the File-tree icon .

♦ To export a tree as a bitmap file:

Use the “Tree” pull-down menu.

Click Tree->Export Tree Image -> Whole

Or drag-and select a part of the tree,

then click Tree->Export Tree Image -> Selected

Call-tree , Caller-tree , and File-tree

Viewing Trees in Crystal C/C++ 3

 L indicates a Library function.

 ? indicates - the function is undeclared.

* indicates - the function is recursive.

 P indicates - the tree node is not a

function; rather it is

a pointer to a function.

The green-colored nodes indicate that those

function-calls were found in ignored lines of

code. (the result of #if, #ifdef, etc.)

Right-click in the Tree-window

for operations on the current-node, e.g.

• Expand Full

• Show its Call-path

• Show all Occurrences

Call-Tree of main()

Viewing Trees in Crystal C/C++ 4

go to the Parent Node

 Previous Node, Next Node

Show All Nodes (after you hide

some nodes)

hide Current Node

mark Current Node

go up to a Marked Node

go down to a Marked Node

go up to a Hidden Node

go down to a Hidden Node

go up to a Highlighted Node

go down to a Highlighted Node

♦ To make the tree concise by hiding nodes that

you are not interested in:

Click the node you wish to hide;

Click , or use right-click menu.

To view hidden nodes, click Show All Nodes.

♦ Mark the nodes that are of interest to you.

Click or to revisit marked nodes;

♦ A file-tree shows headers that are #included

(directly or nested) in the current file.

right-click to highlight header files that were

not found or could not be opened.

Click or to visit highlighted nodes;

Toolbar and Related Operations

Viewing Trees in Crystal C/C++ 5

To Search:

♦ Enter the desired function name in the Search Panel;

press the Enter key.

(You may enter leading chars and use the drop-down list.)

Result of Searching

for SprintPut():

 First occurrence of SprintPut() in the tree

Other occurrences are highlighted.

Search by function-name in the Expanded Tree

Click in main toolbar to go to other
occurrences.

Viewing Trees in Crystal C/C++ 6

♦ On the previous page, you found SprintPut()

in the expanded Call-Tree.

The Call-Tree is about 30 pages long.

♦ How do you extract the call-sequence from the tree?

1. Right-click anywhere in the

Tree-window; then click <Show Path>.

Now you can see the call-path clearly.

Call-Path of SprintPut()

Viewing Trees in Crystal C/C++ 7

♦ Earlier we saw the call-path to

only the current-node.

♦ To extract call-paths to all occurrences of SprintPut():

1. Right-click in the Tree-window; then

click <Show All Paths>.

← Call-paths to All Occurrences of SprintPut():

The leaf-nodes are either

• SprintPut() itself

• or a caller that is already expanded once.

 2003 S GV S oftware Autom ation Re se arch Corp.

S GV S ARC, S GV SARC log o are tra de m arks of

S GV S oftware Autom a tion Re search Corp. All rights re se rve d. VT.V1.0924

SGV Sarc 907 Broad Oaks Drive, Herndon, Virginia 20170

Phone: 703-904-0678 Fax: 703-904-0155 www.sgvsarc.com

All Call-Paths of SprintPut()

